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1 Probabilistic reasoning and parameter estimation

1. Imagine you have made it to the Wimbledon singles final and the umpire is about to flip
a (specially minted) coin to see who will serve first.

What probability do you assign that the coin will, when tossed, land heads? (Try and
justify your answer.)

The coin is tossed and the umpire catches it, immediately covering it with his other hand.
What is your probability the coin has landed heads? What is the umpire’s probability
the coin has landed heads?

The umpire lifts his hand a little to check the coin, which has landed heads, but you
can’t see it. What is your probability the coin has landed heads? What is the umpire’s
probability the coin has landed heads?

You are now shown the coin, and also see that it has landed heads. What is your prob-
ability the coin has landed heads? What is the umpire’s probability the coin has landed
heads?

Now think through the above sequence in full. At what point did the answers change?
Was it related to physical events? Was it related to the information other people had?
Was it related to the information you had?

Now imagine that someone had, before the toss, passed you a note saying that the coin is
biased, and will land one way up 99% of the time (but, unhelpfully, that the note doesn’t
say which way the coin is biased). Answer the above four questions again. How has this
new piece of inside information changed your answers? What if you’d noticed the umpire
tossing the coin beforehand while you were signing autographs and you’d noticed it had
landed heads that time?

2. Solve the ‘Monty Hall’ problem given in the lectures, using Bayes’ theorem. To recall:
you have three doors in front of you, two of which have bad prizes and one with a good
prize. You select one door, and the host opens another and shows that it has one of the
bad prizes. Should you switch?

3. A pan contains 10 ravioli, of which 9 are filled with pesto and one with ricotta. You
put in the pan a further raviolo filled with pesto and cover with an opaque lid. Then
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you randomly draw a raviolo, eat it and discover that it is filled with pesto. After this
procedure, the pan is again in the same state as before. What is now the probability that
the next raviolo drawn will be filled with pesto?

On a different night, you cook a pan of mixed pesto and ricotta ravioli (in equal pro-
portions). One last raviolo remains in your plate, which could be either pesto or ricotta.
Your friend tosses into your plate her last raviolo, which she tells you is a pesto-filled one.
Then you mix the two ravioli randomly, pick one and realize it’s pesto. What is now the
probability that the last raviolo in your plate, before your friend threw hers in, is pesto?
What is the probability that the very last raviolo is pesto?

Compare this to the Monty Hall problem.

4. A body has been found on the Baltimore West Side, with no apparent wounds, although
it transpires that the deceased, a Mr Fuzzy Dunlop, was a heavy drug user. The detective
in charge suggests to close the case and to attribute the death to drugs overdose, rather
than murder.

Knowing that, of all murders in Baltimore, about 30% of the victims were drug addicts,
and that the probability of a dead person having died of overdose is 50% (without fur-
ther evidence apart from the body) estimate the probability that the detective’s hunch
is correct. You may assume that in crime-ridden Baltimore all deaths (at least those
investigated by the detective) are either by overdose or murder. Do you have to make
any other assumptions?

5. The distribution of flux densities of extragalactic radio sources is a power-law with slope
−α, say, so the likelihood to measure a source flux S is p(S) ∝ S−α, above some (known)
instrumental limiting flux density of S0. In a non-evolving Euclidean universe α = 3/2 and
departure of α from the value 3/2 is evidence for cosmological evolution of radio sources
(we assume measurement errors are negligible). This was the most telling argument
against the steady-state cosmology in the early 1960’s (even though they got the value of
a wrong by quite a long way).

• Given observations of radio sources with flux densities S, what is the most probable
value of α, assuming a uniform prior? (Hint: in this case you will have to normalise
p(S)).

• Show that if a single source is observed, and the flux is 2S0, that the most probable
value of α is 2.44.

• By examining the second derivative of the posterior, estimate the error on α to be
1.44.

2 Optional problems

1. An astronomer wishes to know the (mono-chromatic) flux of a particular source and makes
a photometric measurement which registers Nsrc photons. Assume that all the photons
have come from the source itself (i.e., there is no background or or source confusion) and
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that the known calibration constant, C, is such that a source of true flux Fsrc would,
on average, yield Fsrc/C photons in such a measurement (i.e., a generic estimate of the
source’s flux would be F̂src ' CNsrc).

(a) What is the model parameter that the astronomer is trying to infer?

(b) What is/are the datum/data?

(c) What is the likelihood [i.e., the probability Pr(Nsrc|Fsrc)]?

(d) What prior information might the astronomer have before making (or at least making
use of) the measurement?

(e) If the astronomer had access to a catalogue of sources of similar fluxes from a different
part of the sky, how might this catalogue be used to generate an appropriate, if
approximate, prior distribution for the source’s true flux, Fsrc?

(f) If the distribution of source fluxes was known to increase as Pr(Fsrc) ∝ F
−5/2
src , what

would the resultant posterior information on the source’s flux be upon combining
this knowledge about the source population and the data on the particular source
of interest? Is this prior normaliseable (i.e., proper)?

(g) Assuming, for simplicity, that C = 1, plot both the likelihood, Pr(Nsrc|Fsrc), and the
posterior distribution, Pr(Fsrc|Nsrc), as a function of Fsrc in i) the case that Nsrc = 5
(plausible for an X-ray observation) and ii) the case that Nsrc = 104 (plausible for
an optical observation). Are any of these functions approximately Gaussian? What
is the probability that the source has Fsrc = 0? What is the probability that the
source has Fsrc < 0? How did utilising the photometric measurement of the source
affect these probabilities?

(h) What would be a reasonable “best estimate” of the source’s flux? (There are several
plausible answers.) How do these best estimates relate to the naive estimate F̂src =
CNsrc? Does this make sense?

2. The astronomer, having become disillusioned with the lazy data-reporting practices in
optical astronomy, has moved into X-ray astronomy. Having found a source of interest,
the astronomer falls back on old habits and can’t resist trying to do some photometry,
just for old time’s sake. This is something of a shock, however, both because the expected
number of photons from the source is very small (i.e., single figures) and also because
there is now an appreciable background (i.e., maybe a third of the photons registered
might not have been emitted from the target source). The basic task is the same as
above – to infer the flux of the source – but now there is the additional complication of
a background which must be included in the model. Just as a source of (true) flux Fsrc

would provide an average of N̄src = Fsrc/C photons in this measurement, the background
flux (in the measurement aperture), Fbkg, would be expected to contribute N̄bkg = Fbkg/C
photons in such a measurement.

(a) It is quite possible that the background rate is known precisely (or with so much
more accuracy than the measurement that it is effectively exact), so that Fbkg can be
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treated as a known constant. Given a single on-source measurement of Non photons,
what is the likelihood and the posterior for the source flux [again assuming the prior

Pr(Fsrc) ∝ F
−5/2
src ]?

(b) Unfortunately, the uncertainty in the background is often significant; in such cases
it must also be measured and its level inferred. The astronomer now makes two
measurements: one with the telescope aperture centred on the source, which yields
Non photons, and one with the telescope aperture pointed at a “blank” patch of sky,
which yields Noff photons. Although the astronomer is only really interested in Fsrc,
it is also necessary to include the unknown Fbkg in the modelling (to be marginalized
over later).

Write down the likelihood [i.e., Pr(Non, Noff |Fsrc, Fbkg)] and the prior [i.e., Pr(Fsrc, Fbkg)].
(Think carefully about the prior for the background flux. If you have a strongly mo-
tivated choice of prior make sure it is justified; if you are less certain try working
through the problem with different plausible priors that you think might span the
possibilities.)

(c) The rest of the problem requires techniques to be discussed on day 2 of the workshop.

The full posterior Pr(Fsrc, Fbkg|Non, Noff) is fairly complicated (whatever prior for
the background level was chosen).

To explore this distribution without the need for any significant additional program-
ming (or algebgra), generate 105 samples from the full posterior using MCMC in the
case that Non = 9 and Noff = 3 (and, again for convenience, that C = 1). Make
a scatter plot showing the range of plausible Fsrc and Fbkg values. Are they inde-
pendent or correlated? Can you explain this intuitively? Are these two parameters
linked physically at all (i.e., does the flux of a particular source have anything to do
with the background)?

(d) It is only the marginal posterior of the source flux, Pr(Fsrc|Non, Noff), that is really of
interest. To obtain this marginalized distribution, post-process the MCMC output
by making a histogram of the Fsrc values, ignoring the Fbkg values.
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